

Page : 1 LLM & SOA

LLM & SOA
Towards Sustainable ROI from Large-Scale LLM Systems

Pierre Bonnet, founder of the community www.engage-meta.com

pierre.bonnet@hlfl-consulting.com

September 03, 2025

Because LLMs exhibit non-deterministic behavior, their execution must be constrained by pre- and

post-conditions, in line with the classical Service-Oriented Architecture (SOA) pattern.

Context ...2

Approach 1 – Supervisory LLM ...2

Approach 2 – Knowledge Graph ...3

Approach 3 – Service Oriented Architecture (SOA) ...3

Learning System ...5

Conclusion ...5

Join Engage-Meta ...6

http://www.engage-meta.com/
mailto:pierre.bonnet@hlfl-consulting.com

Page : 2 LLM & SOA

Context

The ability of LLMs to generate code gives them the capacity to design and execute processes on

the fly. This development pipeline — user prompt → code generation → agentic execution — opens

the door to building highly sophisticated, “super-intelligent” information systems. By dynamically

producing code, such systems can access databases, consume APIs, perform mathematical

computations, and interact with workflows, all while adapting to changing business and

organizational contexts.

Yet the non-deterministic nature of LLMs makes unit and integration testing virtually impossible. This

limitation blocks large-scale adoption and undermines any prospect of return on investment. Put

simply, no IT professional will risk deploying applications or automations that can randomly produce

bugs or hallucinations.

The remainder of this paper explores solutions to mitigate — and even eliminate — these risks.

Approach 1 – Supervisory LLM

One approach is to deploy an LLM (a) dedicated to monitoring the outputs of another LLM (b) used

within applications. For this setup to yield meaningful results, two conditions must be met. First,

there must be complete semantic isolation between (a) and (b). In other words, no knowledge should

be shared: each model must be trained on distinct datasets and knowledge domains. Second, LLM (a)

must be constrained to operate within a sufficiently narrow and formalized knowledge space, thereby

reducing the likelihood of hallucinations when subject to oversight. Unfortunately, these two

conditions cannot realistically be guaranteed.

In practice, using an LLM to supervise the behavior of an application system can only serve at a high-

level, holistic layer — detecting unusual execution patterns or supporting broad regulatory

monitoring. As such, this solution cannot be relied upon to control hallucinations within LLM-driven

applications and automations.

Page : 3 LLM & SOA

Approach 2 – Knowledge Graph

Another approach is to represent the semantic scope of each LLM use case as a formal knowledge

graph. In this setup, the documentation used to train an application-specific LLM is also ingested

into a knowledge-graph database with the appropriate semantic granularity (see our website

documentation on prompt-driven graph generation).

With this configuration, a user query — whether submitted through a chat interface or triggered via

automation — is sent simultaneously to the LLM (a) and translated into a deterministic query against

the knowledge graph (b). While the LLM’s response (a) may contain hallucinations, the graph’s

response (b) is deterministic, since it is confined to the semantic scope of nodes and their

relationships. Comparing (a) and (b) makes it possible to detect discrepancies and infer potential

hallucinations.

This mechanism can be further reinforced by adding queries to operational databases. In practice,

however, this RAG-like approach remains challenging to implement: it requires a supervisory

intelligence capable of identifying hallucinations by contrasting LLM outputs with more deterministic

data sources. At best, it provides an analytical report on the reliability of the LLM’s answers — but

it cannot guarantee hallucination-free outputs.

Approach 3 – Service Oriented Architecture (SOA)

The third approach builds on a service-oriented architecture (SOA) pattern, in which each LLM use

case is encapsulated within a service contract. This contract formalizes the usual parameters that

govern LLM behavior (role, context, objectives, examples, etc.) while adding explicit pre- and post-

conditions designed to control hallucinations.

These conditions are enforced through deterministic rules that do not rely on LLMs. This pattern

delivers two key benefits: reusability (1) and security (2):

Page : 4 LLM & SOA

1. Reusability. Encapsulating each LLM use case within a service backed by an explicit contract

encourages reuse across multiple applications and automations. It effectively creates a logical

architecture of LLM sequences that interact not only with each other but also with traditional,

non-LLM services. Such an architecture is critical for keeping control over automations, as many

cases documented online are too complex to be industrialized in real enterprises. For instance,

it is common to see N8N automations with more than ten steps that cannot be maintained at

scale. These must be restructured into elementary logical components — services with contracts

that clearly specify invocation conditions (pre-conditions) and output expectations (post-

conditions).

2. Security. A core function of the service contract is to guarantee data security both at invocation

and at result delivery. For example, anonymization rules naturally belong to pre-conditions, as

do checks on user authorizations. On the output side, post-conditions enforce data security by

validating quality. This could mean ensuring that no non-professional content appears in text

generated by an LLM, or that numerical outputs respect defined threshold values.

The figure below illustrates a possible pattern:

As noted earlier, the rules embedded in a service contract must not rely on the LLM itself; this ensures

a deterministic, secure, and predictable behavior. This requirement does not imply that only rigid

programming languages can be used. Drawing on years of SOA implementation, we know how to

Page : 5 LLM & SOA

design data-driven rules (via parameterization) as well as deploy rule engines. It is also feasible to

leverage symbolic AI derived from knowledge graphs, combined with heuristics, as a complementary

technology for implementing the pre- and post-conditions of LLM services.

Learning System

Although an LLM service contract relies on deterministic pre- and post-conditions, this pattern can

still be coupled with a supervisory LLM to assess the effectiveness of those contracts. For example,

when a post-condition triggers a blocking error, two outcomes are possible: the process may stop

with an error returned to the calling system (e.g., an error message displayed to the user), or the

system may re-execute the LLM service after dynamically adjusting certain execution-context data to

guide the LLM in correcting its output.

This feedback loop generates a record in a dataset that the supervisory LLM can later analyze to

identify opportunities for improving the service contract.

In other words, we describe an SOA where service execution reconciles the flexibility of LLMs for

value creation with the rigor of service contracts for predictable and secure operation. The entire

mechanism is monitored by a supervisory LLM that supports the continuous refinement of service

contracts.

Conclusion

The analysis presented in this paper suggests that the hallucinatory tendencies of LLMs need not

pose a barrier to large-scale automation, provided that their operation is framed by formal and

deterministic service contracts.

The evidence indicates that realizing a sustainable return on investment from generative AI in

enterprise contexts requires systematic monitoring of outputs, with oversight calibrated to the

specificity of each use case. To this end, the role of the SOA architect becomes essential: structuring

service contracts, identifying appropriate enabling technologies, establishing governance processes,

and ensuring alignment with the overall data architecture.

Page : 6 LLM & SOA

Join Engage-Meta

On the community website, you’ll find a collection of open-source resources that highlight the

importance of working methodically to deploy AI at scale. Of course, this requires an effort to grasp

the underlying concepts, and it’s often less immediately rewarding than jumping straight into using

NoCode-AI tools.

But taking the time to read, understand, and formalize complex thinking is a strategic asset for

gaining deeper control over AI. By getting involved with Engage-Meta, you achieve two goals at

once: you develop a better understanding of the complexity of AI–data systems, while strengthening

your ability to read, structure, and share your thinking with your teams.

