Logical Data Model Naming Conventions

October 27, 2025 - Data-Only Scope

Pierre Bonnet - www.engage-meta.com

Purpose and Scope

This document defines the naming standards for the Logical Data Model (LDM). It
translates the Business Data Model (BDM) into a LDM compliant with a further
implementation in Supabase (PostgreSQL).

Logical Data Modeling - Naming Convention

http://www.engage-meta.com/

Table of contents

PUurpose and SCOPEcccimrsmnmssssmssmssssmsssnas 1
Position of the Logical Data Modelccocuoinrmrnssnsssssmssssssessssssssssssssssnns 3
Naming CONVENTIONScummimmmimssmsmsmmsmimsmsssssssssssssssssssssssssssssssssssssssasssns 3
GENETAL RUIES ... ceeeeeeeeeeeeereeseesssesessseesessssees s s s s s e s bbb 3
Schema and Table Naming CONVENTION ... ereemeermeesseesseesseessessseessesssssssssseesssesssessssessaes 3
Attributes Naming CONVENTION ... cuieeeeseesseessesssessseesssesssessessssessssssssssssesssssssssssssssssssssssssesens 4
VIeWS and FUNCHONS .ccoueeceeesecreeseerseesseessesssesssesssesssssssessssssssessssssssessssssssessssssssesssssssessssssssasssesens 4
Codification Managementcccommmmmsmmsmsmssmssmssssmsssssssmsssssssssssssssssssssssssssssas 5
Use a Dedicated Reference Table (own table + FK) when the list is: ...cconecnmeinneennnns 5
Use the Generic Codification Table for lists that are: ... 5
How Business Tables Use The th_codifiCationcessssssessssssseees 6
3 0 R 1000 o /2 18 (0) 6
Option 1 - Separate “_history” Table (Classic Pattern).......eeesmessmeesseessseesnns 6
Option 2 - Bitemporal Validity Columns (Single Table)eneenneeenneeseeesseennee 7
Option 3 - Insert-Only (Append-Only Pattern) ... emeeesessseessesssssssssessssssssaeees 8
Comparison with InSert-Only Pattern ... eceeseeesseeseessessessseessesssessseessssssessssessaas 9
120100 0000 T=) o Lo U=T0 B o o Lol ol PPN 10
SEALE o —————————_——— 10
Surrogate Business Primary Key (UUID)ccummemsmmsmsmssmssssessssssssssnsas 10
20 00013 o) (=TSPTSRO 10
Implementation GUIAELINES ... sssssssssssesssas 11
D= 1 0 o) (=TT 11
LTSy ol 20 = Lot o] T 11
Logical Model Structuration in Visual Paradigm...........ccuousnsernsesnsnsanes 12
Maintain Package Continuity with the BDM........cccossesssssssssssesenns 12

Logical Data Modeling - Naming Convention

Position of the Logical Data Model

The Business Data Model (BDM) expresses business meaning and relationships
without technical constraints. The Logical Data Model (LDM) refines it with precise
structure, naming, and implementation rules consistent with SQL and Supabase. It
serves as a stable bridge between business semantics and the physical database
schema.

Naming Conventions

General Rules

Use lowercase snake_case for all identifiers. Keep names short and explicit, avoid
reserved SQL words, and align with the Business Data Model. Prefer semantic clarity
over technical prefixes.

Allowed characters:

e Identifiers (table, column, schema, constraint names) may contain lowercase
letters (a-z), digits (0-9), and underscores (_) only.

e Avoid uppercase letters, spaces, hyphens, or special characters. PostgreSQL
automatically lowercases unquoted identifiers, and Supabase enforces
lowercase naming.

Maximum length:

e PostgreSQL limits identifiers to 63 bytes (= 63 characters in ASCII).
e To stay safe when generating indexes, constraints, and relationships
automatically, keep all logical names < 50 characters.

Invalid or risky characters:

e Do not use accented characters, symbols ($, -, /,.), or spaces.
e These may break migrations or Supabase API endpoints (PostgREST and

GraphQL layers).
Schema and Table Naming Convention
Element Convention Example
Schema (Data Domain) domain or admin_hr, finance_accounting,
domain_subdomain production
Table singular noun; 'tb_' tb_employee_survey,
prefix tb_training_session_participation

Logical Data Modeling - Naming Convention

Attributes Naming Convention

Attribute Convention Stereotype Example
Type
Surrogate | id_<table> <<PK>> id_tb_employee_survey
Primary <<PK>>
Key
(UUID)
Business 1 to N attributes used as a unique <<BK>> (code <<BK>>
Primary constraint to form the business date <<BK>>)
Key primary key
Foreign id_<referenced_table> <<FK>> id_tb_employee <<FK>>
Key

In case of multiple foreign keys
pointing to the same table:
id_<referenced_table>_<association
name>

In case of a link to the generic
Codification table:
<id_tb_codification>_<cd_type>

Code / cd_<meaning> cd_state, cd_language
Enum

Date / dt_<meaning> / ts_<meaning> dt_created, ts_updated
Time

Boolean is_, has_, or can_ prefix is_active,

has_signed_contract

Views and Functions
Views: prefix 'vw_"; Functions: prefix 'fn_".

Example: vw_employee_engagement_score, fn_calculate_training_hours.

Logical Data Modeling - Naming Convention

Codification Management

Ensure consistent codes/labels, multilingual UX, and data quality without spawning
dozens of tiny lookup tables while still giving first-class treatment to a few
structural code lists (Country, Currency, Unit, Language...) used across the
enterprise and/or tied to external standards (ISO/UN).

Use a Dedicated Reference Table (own table + FK) when the list is:

e Structural & cross-domain (used by many domains, part of keys, or drives
joins).

e Externally standardized with rich attributes (e.g., ISO 3166-1 Country has
alpha-2, alpha-3, numeric, region).

e Stable, low-churn (rarely changes; updates are governed).

¢ Needed in constraints (e.g., must be referenced as a strict FK—no “type”
ambiguity).

e Examples: tb_country, tb_currency, tb_unit, tb_language.

Use the Generic Codification Table for lists that are:

e Functional / business-specific, evolving, or project-scoped.

e Medium/high churn (business adds/removes values).

e Mostly label-driven (labels, order, grouping, validity windows).

e Multilingual UX (labels resolved at runtime).

e Examples: EMPLOYMENT_STATUS, CONTRACT_TYPE,
QUALITY_NONCONFORMITY_TYPE, ISO_CATEGORY, HR_LEVEL.

id_codification cd_type cd_value cd_language Ib_short Ib_long dt_validity_start dt_validity_end

1 CONTRACT_TYPE TEMP EN Temporary Temporary 2020-01-01 (null)
employment

contract

CONTRACT_TYPE Permanent Permanent 2020-01-01
employment

contract

EMPLOYEE_STATUS Currently 2020-01-01
employed and

active

EMPLOYEE_STATUS On Leave Temporarily 2020-01-01 (null)
absent from

work

EMPLOYEE_STATUS TERMINATED Terminated Employment 2020-01-01

contract ended

NONCONFORMITY_TYPE PROD_DEFECT Product Defect Defect found 2020-01-01 (null)
during
production

Logical Data Modeling - Naming Convention

How Business Tables Use The tb_codification

Business tables store only the cd_value (e.g., 'FR') or the codification identifier.
Labels are resolved dynamically using joins when needed for reporting or user
interfaces.

Example join (conceptual):

common.codification c

c.cd_type =

c.cd_value = employee.cd_country

Join the employee table with the codification table to translate the employee’s
stored country code (FR, VN...) into its full label (‘France’, ‘Vietnam’...).

Historization

Historization refers to the ability to preserve the different versions of data over
time, enabling audit, traceability, and ‘as-of-date’ analysis. This section describes
three complementary strategies that can be used in Supabase/PostgreSQL
depending on functional requirements, performance and storage considerations.

Option 1 — Separate “_history” Table (Classic Pattern)

This approach creates a dedicated table suffixed with '_history' for each entity that
requires versioning. The main table always contains the latest (current) version,
while the history table stores all previous versions with validity timestamps.

Main Table History Table
employee_contract employee_contract_history
Before the update

employee_contract

id_contract id_employee updated_at

101 12 2024-01-01 09:00

employee_contract_history

id_contract id_employee recorded_from recorded_to

Logical Data Modeling - Naming Convention

After the update
employee_contract

id_contract id_employee updated_at

101 12 2025-01-01 10:00

employee_contract_history

id_contract id_employee recorded_from recorded_to

101 12 2024-01-01 09:00 2025-01-01 10:00

Advantages: Simple to understand, keeps main table small, easy ‘as-of’ reporting.
Drawbacks: Requires triggers to copy old rows; doubles the number of tables to

maintain.

Option 2 — Bitemporal Validity Columns (Single Table)

In this approach, all versions are stored in the same table with two pairs of
timestamp columns that describe both business validity and system recording time.

This enables advanced audit scenarios (‘what did we know on a given date’).
It is a structured historization based on two clocks (business + system).
Example:

employee_contract

| id_contract | id_employee | salary | ts_valid_from | ts_valid_to | ts_recorded_from |
ts_recorded_to |

oo oo R oo o |
|101]12]1500]2023-01-01|2023-12-31 | 2023-01-01 | 2023-12-31 |

| 102]12]1800]|2024-01-01 | 9999-12-31 | 2024-01-01 | 9999-12-31 |

Column Represents Purpose Example
ts_valid_from Business validity start When the fact The salary increase
date becomes true in is valid starting

real life (e.g.,, when | January 1 2024.
anew contract or
price takes effect).

ts_valid_to Business validity end When the fact stops | The old salary
date being true in real stopped being valid
life (e.g., contract on December 31
ends or price 2023

Logical Data Modeling - Naming Convention

replaced).

ts_recorded_from | System recording start When the HR encoded the
time information was new contract on
stored or known by | January 15 2024

the system

(technical time).

ts_recorded_to System recording end When the system This version
time replaced or deleted | remained in the DB
this version (i.e., until the next
when it was update on May 1
superseded by a 2024
newer row

Advantages: Full audit trail within one table; supports both business and system
time (true bitemporal modeling). No need to maintain separate history tables.

Drawbacks: Heavier queries (must filter by validity); larger storage footprint; more

complex to manage manually.

Option 3 — Insert-Only (Append-Only Pattern)

This strategy forbids updates entirely.

Each change inserts a new record instead of modifying existing data. Queries
determine the latest valid record by filtering or sorting by timestamp. This approach
is simple, auditable, and aligns well with modern event-driven architectures.

It is event log with everything is an append.
Example:

employee_salary

| employee_id | salary | ts_valid_from | ts_valid_to | is_current |
S R R oo |

| 12| 1500 | 2023-01-01 | 2023-12-31 | false |

| 12| 1800 | 2024-01-01 | 9999-12-31 | true |

Advantages: No updates required; natural audit trail; compatible with append-only
data pipelines. Partial unique indexes (e.g., one current row per key) can ensure
data integrity - Example:

INDEX uqg_contract_current

employee_contract (id_contract)

is_current = H

Logical Data Modeling - Naming Convention

Drawbacks: Table grows faster; small updates require inserting new rows;
uniqueness constraints must be managed carefully.

Comparison with Insert-Only Pattern

Although both the Bitemporal and Insert-Only approaches rely on inserting new
records instead of overwriting existing ones, they serve different purposes and offer
different levels of temporal precision. The table below summarizes the key
distinctions.

Option 2 - Bitemporal Validity Option 3 - Insert-Only

Columns (Append-Only Pattern)

Purpose Capture both business time (when | Keep every change as a simple
facts are true in reality) and system | event for audit or analytics,
time (when the database learns or | without managing business

replaces them). validity.

Columns used Four timestamps: ts_valid_from / One or two timestamps:
ts_valid_to (business) + ts_recorded or ts_valid_from,
ts_recorded_from / ts_recorded_to | sometimes with an is_current
(system). flag.

Update behavior | Each change inserts a new row and | Each change is a pure INSERT;
closes the previous one (updates no UPDATE at all. The latest

ts_recorded_to, optionally record is found by the max
ts_valid_to). timestamp or flag.

Query model Can answer 'what was true in Can only reconstruct 'what
business at date X' and 'what did was the latest record’ or build
the system know at date Y'. event timelines.

Complexity Higher- four timestamps, more Lower - append-only logic,
logic in triggers and queries. simpler to implement.

Use cases Regulatory, compliance, or legal Event logs, telemetry, metrics,
data requiring full traceability data lakes, analytical pipelines.

(contracts, financial transactions).

Integrity rules Must avoid overlapping validity Rely on uniqueness or partial
intervals; requires controlled indexes to identify current
updates. records.

In summary, every bitemporal table is append-only, but not every append-only table
is bitemporal. Bitemporal modeling provides dual-time semantics (business and
system validity), whereas Insert-Only simply records immutable events.

Logical Data Modeling - Naming Convention

Recommended Practice

It is recommended to select the historization pattern per domain according to the
data’s business volatility and audit requirements:

e Use option 1 (History Table) for transactional domains (Finance, HR
contracts, I1SO).

e Use option 2 (Bitemporal) for regulatory or compliance-critical data where
system and business validity both matter (e.g., Quality, ESG).

e Use option 3 (Insert-Only) for fast-changing operational data (IoT sensors,
production metrics, logs).

In all cases, historization design must be documented in the Logical Data Model to
guarantee long-term consistency, auditability, and performance predictability.

State

State management: use cd_state for current status; add multiple columns if parallel
states exist.

Surrogate Business Primary Key (UUID)

Principle

Each business table in the Logical Data Model (LDM) must include a surrogate
primary key implemented as a Universally Unique Identifier (UUID). This ensures
global uniqueness of records across environments, projects, and future integrations,
regardless of the physical database instance or deployment context:

1. Durability and portability. UUIDs remain stable across database migrations,
data exchanges, and system merges.

2. Avoids collisions. No dependency on incremental sequences that can overlap
between environments (e.g., dev, staging, prod).

3. Aligns with distributed architectures. Supabase, like most modern cloud and
event-driven platforms, natively supports UUIDs as uuid data type with
default generator gen_random_uuid() or uuid_generate_v4().

4. Future interoperability. Guarantees continuity with potential external
systems (ERP, Al services, API-driven ecosystems).

Logical Data Modeling - Naming Convention

10

Implementation Guidelines
Element Rule

Primary key column name Always id_<table_name> (e.g.,, id_tb_employee,
id_tb_invoice).

Data type uuid

Default value gen_random_uuid() (requires PostgreSQL pgcrypto
extension; enabled by default in Supabase).

Uniqueness Defined as the primary key of the table.

Business key Optionally, define a natural or business key (e.g.,
cd_employee, cd_invoice) to maintain readability and
traceability.

Referencing foreign keys Use UUID type for all foreign keys referencing

surrogate PKs to ensure type consistency.

Example

Example implementation in Supabase/PostgreSQL:

admin_hr.employee (

id_employee uuid KEY gen_random_uuid(),

cd_employee text
full_name text

hire_date

Best Practices

e Always generate UUIDs server-side to guarantee integrity and uniqueness.

e Keep business codes (cd_*) human-readable for reporting, but never rely on
them as technical identifiers.

¢ Avoid mixing integer sequences and UUIDs in the same logical model. Choose
one consistent approach for all entities.

e When importing legacy data, retain the historical business key as cd_legacy
or cd_external for traceability.

Logical Data Modeling - Naming Convention 11

Logical Model Structuration in Visual Paradigm

Organize the LDM in Visual Paradigm (VP) to mirror the Business Data Model (BDM)
ensuring traceability, clarity, and a seamless transition to the physical schema

(pgModeler).

BDM: Class Diagram in VP.

LDM: ERD Diagram in VP.

Maintain Package Continuity with the BDM

e Data Domain — VP package (e.g., HR, Finance, Production).
e Data Sub-Domain — sub-package (e.g., HR.Survey, HR.Training).
¢ One logical diagram per sub-package unless it contains very few tables.

--- end---

Logical Data Modeling - Naming Convention

12

