
Logical Data Modeling – Naming Convention 1

Logical Data Model Naming Conventions
October 27, 2025 – Data-Only Scope

Pierre Bonnet – www.engage-meta.com

Purpose and Scope

This document defines the naming standards for the Logical Data Model (LDM). It

translates the Business Data Model (BDM) into a LDM compliant with a further

implementation in Supabase (PostgreSQL).

http://www.engage-meta.com/

Logical Data Modeling – Naming Convention 2

Table of contents

Purpose and Scope ... 1

Position of the Logical Data Model ... 3

Naming Conventions .. 3

General Rules.. 3

Schema and Table Naming Convention ... 3

Attributes Naming Convention .. 4

Views and Functions ... 4

Codification Management .. 5

Use a Dedicated Reference Table (own table + FK) when the list is: 5

Use the Generic Codification Table for lists that are: .. 5

How Business Tables Use The tb_codification ... 6

Historization ... 6

Option 1 – Separate “_history” Table (Classic Pattern) .. 6

Option 2 – Bitemporal Validity Columns (Single Table) ... 7

Option 3 – Insert-Only (Append-Only Pattern) ... 8

Comparison with Insert-Only Pattern .. 9

Recommended Practice .. 10

State .. 10

Surrogate Business Primary Key (UUID) .. 10

Principle ... 10

Implementation Guidelines .. 11

Example.. 11

Best Practices .. 11

Logical Model Structuration in Visual Paradigm 12

Maintain Package Continuity with the BDM... 12

Logical Data Modeling – Naming Convention 3

Position of the Logical Data Model

The Business Data Model (BDM) expresses business meaning and relationships

without technical constraints. The Logical Data Model (LDM) refines it with precise

structure, naming, and implementation rules consistent with SQL and Supabase. It

serves as a stable bridge between business semantics and the physical database

schema.

Naming Conventions

General Rules

Use lowercase snake_case for all identifiers. Keep names short and explicit, avoid

reserved SQL words, and align with the Business Data Model. Prefer semantic clarity

over technical prefixes.

Allowed characters:

• Identifiers (table, column, schema, constraint names) may contain lowercase

letters (a–z), digits (0–9), and underscores (_) only.

• Avoid uppercase letters, spaces, hyphens, or special characters. PostgreSQL

automatically lowercases unquoted identifiers, and Supabase enforces

lowercase naming.

Maximum length:

• PostgreSQL limits identifiers to 63 bytes (≈ 63 characters in ASCII).

• To stay safe when generating indexes, constraints, and relationships

automatically, keep all logical names ≤ 50 characters.

Invalid or risky characters:

• Do not use accented characters, symbols ($, -, /, .), or spaces.

• These may break migrations or Supabase API endpoints (PostgREST and

GraphQL layers).

Schema and Table Naming Convention

Element Convention Example

Schema (Data Domain) domain or

domain_subdomain

admin_hr, finance_accounting,

production

Table singular noun; 'tb_'

prefix

tb_employee_survey,

tb_training_session_participation

Logical Data Modeling – Naming Convention 4

Attributes Naming Convention

Attribute

Type

Convention Stereotype Example

Surrogate

Primary

Key

(UUID)

id_<table> <<PK>> id_tb_employee_survey

<<PK>>

Business

Primary

Key

1 to N attributes used as a unique

constraint to form the business

primary key

<<BK>> (code <<BK>>

date <<BK>>)

Foreign

Key

id_<referenced_table>

In case of multiple foreign keys

pointing to the same table:

id_<referenced_table>_<association

name>

In case of a link to the generic

Codification table:

<id_tb_codification>_<cd_type>

<<FK>> id_tb_employee <<FK>>

Code /

Enum

cd_<meaning> cd_state, cd_language

Date /

Time

dt_<meaning> / ts_<meaning> dt_created, ts_updated

Boolean is_, has_, or can_ prefix is_active,

has_signed_contract

Views and Functions

Views: prefix 'vw_'; Functions: prefix 'fn_'.

Example: vw_employee_engagement_score, fn_calculate_training_hours.

Logical Data Modeling – Naming Convention 5

Codification Management

Ensure consistent codes/labels, multilingual UX, and data quality without spawning

dozens of tiny lookup tables while still giving first-class treatment to a few

structural code lists (Country, Currency, Unit, Language…) used across the

enterprise and/or tied to external standards (ISO/UN).

Use a Dedicated Reference Table (own table + FK) when the list is:

• Structural & cross-domain (used by many domains, part of keys, or drives

joins).

• Externally standardized with rich attributes (e.g., ISO 3166-1 Country has

alpha-2, alpha-3, numeric, region).

• Stable, low-churn (rarely changes; updates are governed).

• Needed in constraints (e.g., must be referenced as a strict FK—no “type”

ambiguity).

• Examples: tb_country, tb_currency, tb_unit, tb_language.

Use the Generic Codification Table for lists that are:

• Functional / business-specific, evolving, or project-scoped.

• Medium/high churn (business adds/removes values).

• Mostly label-driven (labels, order, grouping, validity windows).

• Multilingual UX (labels resolved at runtime).

• Examples: EMPLOYMENT_STATUS, CONTRACT_TYPE,

QUALITY_NONCONFORMITY_TYPE, ISO_CATEGORY, HR_LEVEL.

Logical Data Modeling – Naming Convention 6

How Business Tables Use The tb_codification

Business tables store only the cd_value (e.g., 'FR') or the codification identifier.

Labels are resolved dynamically using joins when needed for reporting or user

interfaces.

Example join (conceptual):

Join the employee table with the codification table to translate the employee’s

stored country code (FR, VN…) into its full label (‘France’, ‘Vietnam’…).

Historization

Historization refers to the ability to preserve the different versions of data over

time, enabling audit, traceability, and ‘as-of-date’ analysis. This section describes

three complementary strategies that can be used in Supabase/PostgreSQL

depending on functional requirements, performance and storage considerations.

Option 1 – Separate “_history” Table (Classic Pattern)

This approach creates a dedicated table suffixed with '_history' for each entity that

requires versioning. The main table always contains the latest (current) version,

while the history table stores all previous versions with validity timestamps.

Main Table History Table

employee_contract employee_contract_history

Before the update

Logical Data Modeling – Naming Convention 7

After the update

Advantages: Simple to understand, keeps main table small, easy ‘as-of’ reporting.

Drawbacks: Requires triggers to copy old rows; doubles the number of tables to

maintain.

Option 2 – Bitemporal Validity Columns (Single Table)

In this approach, all versions are stored in the same table with two pairs of

timestamp columns that describe both business validity and system recording time.

This enables advanced audit scenarios (‘what did we know on a given date’).

It is a structured historization based on two clocks (business + system).

Example:

Column Represents Purpose Example

ts_valid_from Business validity start

date

When the fact

becomes true in

real life (e.g., when

a new contract or

price takes effect).

The salary increase

is valid starting

January 1 2024.

ts_valid_to Business validity end

date

When the fact stops

being true in real

life (e.g., contract

ends or price

The old salary

stopped being valid

on December 31

2023

Logical Data Modeling – Naming Convention 8

replaced).

ts_recorded_from System recording start

time

When the

information was

stored or known by

the system

(technical time).

HR encoded the

new contract on

January 15 2024

ts_recorded_to System recording end

time

When the system

replaced or deleted

this version (i.e.,

when it was

superseded by a

newer row

This version

remained in the DB

until the next

update on May 1

2024

Advantages: Full audit trail within one table; supports both business and system

time (true bitemporal modeling). No need to maintain separate history tables.

Drawbacks: Heavier queries (must filter by validity); larger storage footprint; more

complex to manage manually.

Option 3 – Insert-Only (Append-Only Pattern)

This strategy forbids updates entirely.

Each change inserts a new record instead of modifying existing data. Queries

determine the latest valid record by filtering or sorting by timestamp. This approach

is simple, auditable, and aligns well with modern event-driven architectures.

It is event log with everything is an append.

Example:

Advantages: No updates required; natural audit trail; compatible with append-only

data pipelines. Partial unique indexes (e.g., one current row per key) can ensure

data integrity – Example:

Logical Data Modeling – Naming Convention 9

Drawbacks: Table grows faster; small updates require inserting new rows;

uniqueness constraints must be managed carefully.

Comparison with Insert-Only Pattern

Although both the Bitemporal and Insert-Only approaches rely on inserting new

records instead of overwriting existing ones, they serve different purposes and offer

different levels of temporal precision. The table below summarizes the key

distinctions.

Aspect Option 2 – Bitemporal Validity

Columns

Option 3 – Insert-Only

(Append-Only Pattern)

Purpose Capture both business time (when

facts are true in reality) and system

time (when the database learns or

replaces them).

Keep every change as a simple

event for audit or analytics,

without managing business

validity.

Columns used Four timestamps: ts_valid_from /

ts_valid_to (business) +

ts_recorded_from / ts_recorded_to

(system).

One or two timestamps:

ts_recorded or ts_valid_from,

sometimes with an is_current

flag.

Update behavior Each change inserts a new row and

closes the previous one (updates

ts_recorded_to, optionally

ts_valid_to).

Each change is a pure INSERT;

no UPDATE at all. The latest

record is found by the max

timestamp or flag.

Query model Can answer 'what was true in

business at date X' and 'what did

the system know at date Y'.

Can only reconstruct 'what

was the latest record' or build

event timelines.

Complexity Higher– four timestamps, more

logic in triggers and queries.

Lower – append-only logic,

simpler to implement.

Use cases Regulatory, compliance, or legal

data requiring full traceability

(contracts, financial transactions).

Event logs, telemetry, metrics,

data lakes, analytical pipelines.

Integrity rules Must avoid overlapping validity

intervals; requires controlled

updates.

Rely on uniqueness or partial

indexes to identify current

records.

In summary, every bitemporal table is append-only, but not every append-only table

is bitemporal. Bitemporal modeling provides dual-time semantics (business and

system validity), whereas Insert-Only simply records immutable events.

Logical Data Modeling – Naming Convention 10

Recommended Practice

It is recommended to select the historization pattern per domain according to the

data’s business volatility and audit requirements:

• Use option 1 (History Table) for transactional domains (Finance, HR

contracts, ISO).

• Use option 2 (Bitemporal) for regulatory or compliance-critical data where

system and business validity both matter (e.g., Quality, ESG).

• Use option 3 (Insert-Only) for fast-changing operational data (IoT sensors,

production metrics, logs).

In all cases, historization design must be documented in the Logical Data Model to

guarantee long-term consistency, auditability, and performance predictability.

State

State management: use cd_state for current status; add multiple columns if parallel

states exist.

Surrogate Business Primary Key (UUID)

Principle

Each business table in the Logical Data Model (LDM) must include a surrogate

primary key implemented as a Universally Unique Identifier (UUID). This ensures

global uniqueness of records across environments, projects, and future integrations,

regardless of the physical database instance or deployment context:

1. Durability and portability. UUIDs remain stable across database migrations,

data exchanges, and system merges.

2. Avoids collisions. No dependency on incremental sequences that can overlap

between environments (e.g., dev, staging, prod).

3. Aligns with distributed architectures. Supabase, like most modern cloud and

event-driven platforms, natively supports UUIDs as uuid data type with

default generator gen_random_uuid() or uuid_generate_v4().

4. Future interoperability. Guarantees continuity with potential external

systems (ERP, AI services, API-driven ecosystems).

Logical Data Modeling – Naming Convention 11

Implementation Guidelines

Element Rule

Primary key column name Always id_<table_name> (e.g., id_tb_employee,

id_tb_invoice).

Data type uuid

Default value gen_random_uuid() (requires PostgreSQL pgcrypto

extension; enabled by default in Supabase).

Uniqueness Defined as the primary key of the table.

Business key Optionally, define a natural or business key (e.g.,

cd_employee, cd_invoice) to maintain readability and

traceability.

Referencing foreign keys Use UUID type for all foreign keys referencing

surrogate PKs to ensure type consistency.

Example

Example implementation in Supabase/PostgreSQL:

Best Practices

• Always generate UUIDs server-side to guarantee integrity and uniqueness.

• Keep business codes (cd_*) human-readable for reporting, but never rely on

them as technical identifiers.

• Avoid mixing integer sequences and UUIDs in the same logical model. Choose

one consistent approach for all entities.

• When importing legacy data, retain the historical business key as cd_legacy

or cd_external for traceability.

Logical Data Modeling – Naming Convention 12

Logical Model Structuration in Visual Paradigm

Organize the LDM in Visual Paradigm (VP) to mirror the Business Data Model (BDM)

ensuring traceability, clarity, and a seamless transition to the physical schema

(pgModeler).

BDM: Class Diagram in VP.

LDM: ERD Diagram in VP.

Maintain Package Continuity with the BDM

• Data Domain → VP package (e.g., HR, Finance, Production).

• Data Sub-Domain → sub-package (e.g., HR.Survey, HR.Training).

• One logical diagram per sub-package unless it contains very few tables.

--- end---

